
User Manual
SCUTTLE Power Management System

Sponsored By
David Malawey

Authors

Daniel Zoch Patrick Bowers

 Hayden Bowen Cameron Travis

User Manual
Overview

The purpose of this user manual is to provide instruction on how to operate and use
the SCUTTLE Power Management System. This manual contains information covering
topics which are unique to the S.P.M.S. and are NOT covered already in the MXET 300
course or accompanying provisions. The topics which are specifically and exclusively
covered in this manual are listed below.

Quick Start Guide 2

Introduction 2
Setting Up The Charging Station 2
Setting Up The SCUTTLE On Board Module and Webcam 3
Deploying The Docking Software 6

Introduction 6
Calibrating the Software 6
Initiating The Docking Sequence 7

Using The System Database 9
Connecting to the Cayenne IoT Database 9
Understanding The Dashboards 9
Manipulating the Cayenne IoT Database 11

Software Breakdown 15
Software Overview 15
Error Codes 18
Charging Station Software Setup 19

Hardware Breakdown 21
The Charging Station 21

Electrical / Electronic Assembly 21
Mechanical Assembly 23

The On-Board Module 24
Electrical / Electronic Assembly 24
Mechanical Assembly 25

1

Quick Start Guide

Introduction
The Quick Start Guide is designed for users who are already provided with the following:
-A fully assembled S.P.M.S. Charging Station with accompanying software installed and running
-A SCUTTLE On Board module with wireless receiver pads and RFID tag properly attached
-A S.P.M.S. compatible SCUTTLE including a webcam with appropriate mounting attachments
and supporting software properly installed including both the basic files for MXET 300 AND the
files provided with the S.P.M.S. (A list of these files can be found in the “Software Overview”
section of this manual)

In essence, this portion of the manual will allow you to quickly mount your S.O.B. in the proper
position as well as your webcam and show you how to use the docking sequence function in
your code so that you are instantly ready to autonomously dock and charge your SCUTTLE!

Setting Up The Charging Station
If your Charging Station is already assembled and the supporting software is properly installed,
then the setup process for the Charging Station is very simple. Just plug the station into any
U.S. Standard wall outlet and ensure the area around the Station described in Figure 1.0 is free
of any obstructions.

Figure 1.0: Charging Station Obstacle Free Zone

2

Once properly setup, the Station’s Three Wireless base pads should have dimly lit red indicators
on the sides and the MFRC522 RFID Reader should have a lit red LED. The complete
assembly should mimic the image shown below in Figure 1.1.

Figure 1.1: Charging Station Full Assembly

Setting Up The SCUTTLE On Board Module and Webcam
If your S.O.B. PCB is already assembled for you, the steps for installing it on your SCUTTLE are
as follows:

1) Attach front panel to the front of the front rail of SCUTTLE. (The front panel should
already have the wireless receiver pads and RFID reader attached to it. If not, refer to
“The On-Board Module”)

2) Attach S.O.B. PCB to the rear of the front rail of SCUTTLE. (The PCB should already
have the mounting clips attached to it. If not, refer to “The On-Board Module”)

3) Follow the wiring graphic shown below in Figure 1.2 and ensure the proper connections
are made. (Your battery pack should already have the LiPo connectors. If not, refer to
“The On-Board Module”)

4) Mount the webcam using the provided mounting braces on the top of the rear rail of
SCUTTLE. The webcam should be elevated off of the rail using the twisting extension
mount and should also be facing towards the front of the SCUTTLE.

5) Lastly, ensure proper alignment of your front panel and webcam using the diagram
provided below in Figure 1.3.

3

Figure 1.2: S.O.B. Wiring Diagram

Using Figure 1.3 below for reference, position your SCUTTLE with the attached S.O.B.
hardware up against the charging station, ensure that the charging station is NOT powered for
now to avoid passing unwanted current to your battery pack. Point 1 in the below figure depicts
how the RFID card should be aligned with the RFID reader on the station. It is also important to
note that you should position your ID card such that it does not come between the base and
receiver pads next to it. It is recommended to use double sided tape to hold your RFID tag so it
can be easily moved. Point 2 in the figure depicts how the receiver pads should align with the
center of the base pads when up against the station, the etchings on the front panel show where
to glue your receiver pads to ensure this alignment. Point 3 shows how the webcam should
align with the station when docked, the center of the webcam should be aligned with the center
of the orange target ball on the charging station. NOTE: this may not necessarily be the center
position relative to the SCUTTLE’s rail. After you have completed your alignments, it is safe to
power on the charging station.

4

Figure 1.3: S.O.B. and Camera Alignment Diagram

5

Deploying The Docking Software

Introduction
This section is not intended to be a full overview of the entire software system for the

SCUTTLE Power Management System. Rather, this section is intended to provide the steps
necessary to simply activate the SCUTTLE’s autonomous docking function within your code and
to ensure proper calibration of the SCUTTLE’s compass and webcam.

Calibrating the Software
Calibrating the webcam only needs to be performed once; it will retain its calibration

through power cycles. By default, the camera is calibrated to look for the dark orange ball
originally delivered with our prototypes. If the color, material, or lighting properties of the ball
should change, the camera will need to be recalibrated for these new target parameters.
Calibrating the webcam is already covered in the MXET 300 course and so will not be
discussed any further here. The default color target values for the webcam which correspond to
the dark orange ball seen in our demonstrations are as follows:

color_range = np.array([[0, 76, 255], [41, 224, 255]]) #target for dark orange ball

These values are already implemented in the provided software, and therefore do not need to
be changed if the desired target is the same dark orange ball.

Properly calibrating the SCUTTLE’s onboard compass is a crucial step in ensuring
accurate docking. Compass calibration is already covered in the MXET 300 course, however
there are two additional steps which must be performed for using the autonomous docking
sequence correctly.

First, after properly calibrating the compass using the methods described in the course,
the user should acquire the values for the SCUTTLE’s target heading when docking at the
station. Figure 1.4 below depicts the proper positioning of the SCUTTLE in order to acquire the
target heading. It is important that the SCUTTLE be position in the center of its docking spec
range and aligned with the receiver pads and ball target. The target heading needs to be
acquired in 360 notation and then entered into the docking code. To do this, first open the file
“L2_docking_functions.py” in cloud9. Then uncomment the section of code towards the bottom
of the file which reads:

6

while 1:
print(GetH360())
time.sleep(2)

Save the file, then run “L2_docking_functions.py” on the SCUTTLE. Once the SCUTTLE is
properly placed according to Figure 1.4, use the printouts in the terminal to determine the target
heading in 360 degree notation.

Once the target heading has been determined, enter the value into the file “L3_Dock.py”
at line 21, the variable labeled “TH”.
Lastly, keep the “L2_docking_functions.py” code running with the uncommented while loop and
turn the SCUTTLE 180 degrees so that now it is identical to the image shown in Figure 1.4 but
pointing directly away from the Station. In the same manner as before, use the printouts to find
the Station’s heading in 360 degree notation and enter that value into line 22 of the
“L3_Dock.py” file at the variable labeled “SH”. In theory, this value would be the opposite of
what was found for the target heading which could easily be calculated, however due to
inaccuracies with the onboard compass, this is not the case in practice.

With those two values entered, the SCUTTLE is calibrated and ready to run, comment
the while loop mentioned earlier and save the “L2_docking_functions” file.

Figure 1.4: Target Heading Calibration (Note: Arrow direction indicates direction of camera facing)

Initiating The Docking Sequence

The docking sequence can be started in a variety of ways, the most common of which
however is to call the Dock() function in your script. To do this, ensure your file imports the
“L3_Dock.py” file provided. For example:

import L3_Dock as Dock

7

With this file imported, running the docking sequence is as simple as calling the function in the
example shown below:

Dock.Dock() #this tells the SCUTTLE to start autonomously docking.

Calling this function will run the entire docking sequence and will also keep the SCUTTLE at the
Charging Station until its batteries are fully charged at which point it will then reverse out of the
Station and return to the next line of execution at the point where the function call originated.

8

Using The System Database
The SCUTTLE Power Management System uses the Cayenne MyDevices IoT Database

to display Charging Station occupancy status and SCUTTLE battery levels. Using our Cayenne
MyDevices account is essential to managing Charging Station and SCUTTLE data.

Connecting to the Cayenne IoT Database
In order to display SCUTTLE battery levels and Charging Station occupancy status, the

user must connect to the Nextec Team’s online Cayenne dashboard.
1) Go to https://developers.mydevices.com/cayenne/signin/
2) Enter username and password credentials

Email Address: nextecteam2019@gmail.com
Password: !Actuallybasic19

Understanding The Dashboards
After logging into the Nextec Team Cayenne MyDevices account, a dashboard with

multiple SCUTTLE and Charging Station devices can be seen. Each device corresponds to
either a Charging Station or SCUTTLE robot. Each has their own individual dashboard full of
different widgets.

1) Charging Station Dashboard
The Charging Station dashboard is responsible for displaying occupancy status

information. As seen below in Figure 2.0, the dashboard consists of two different types of
widgets. The first widget is the “Vacant” status widget. If this widget is lit up, then the user knows
that Charging Station #1 is vacant. The rest of the widgets are the “SCUTTLE #” widgets. These
widgets light up when the corresponding SCUTTLE is docked at Station #1.

Extra Charging Station devices and SCUTTLE widgets can be added as needed. This
process is described in the “Manipulating the Cayenne IoT Database” section of this user
manual.

9

https://developers.mydevices.com/cayenne/signin/
mailto:nextecteam2019@gmail.com

Figure 2.0: Charging Station Dashboard

2) SCUTTLE Dashboard

The SCUTTLE dashboard is responsible for displaying battery level information. As seen
below in Figure 2.1, each SCUTTLE’s dashboard can be accessed on the left side of the
screen. Each dashboard consists of the charging status and battery level widgets. When the
charging status widget lights up, this means that the corresponding SCUTTLE is currently being
charged. The battery level widget will display the current battery level percentage based on the
battery pack’s voltage levels.

Extra SCUTTLE devices can be added as needed. This process is described in the
“Manipulating the Cayenne IoT Database” section of this user manual.

10

Figure 2.1: SCUTTLE Dashboard

Manipulating the Cayenne IoT Database
This section describes how you can add your own device (Charging Station or

SCUTTLE), add new widget displays, and customize widget names/symbols.
1) Adding a new Device

Once logged in, click on the “Add new” button in the top left-hand of the screen, then
choose the “Bring Your Own Thing” option.

Figure 2.2: Cayenne Add a new Device

11

Now that you have added a new device, a new device name will show up on the left
hand side of your dashboard. This device name should be changed in the bottom right of the
screen to either a new Charging Station or SCUTTLE. This screen also provides information on
how to connect your device to this new dashboard. The MQTT username, MQTT password, and
client ID are used in conjunction with our L1_cayenne code to connect your device. Refer to
L1_cayenne for the necessary function calls, and use the MQTT information given to connect to
Cayenne.

Figure 2.3: Cayenne MQTT Info

After successfully connecting your BeagleBone Blue to the dashboard using

L1_cayenne, your dashboard will change to a blank canvas where new widgets can be added.
The MQTT information for your dashboard can always be accessed again by clicking on the cog
wheel in the top right hand corner of the dashboard.

12

Figure 2.4: Cayenne New Dashboard

2) Adding and Customizing new Widget Displays

a) Charging Station Widgets
When adding a new Charging Station to the IoT database, the “Vacant”

and “SCUTTLE #” widgets need to be added to complete the charging station
dashboard. To do this, begin by running the L3_chargingstation code. Running
this code will automatically add the “Vacant” status widget. To make this widget a
permanent widget (can later be deleted if needed), click the “+” button in the top
right hand corner of the widget. This widget can then be customized by clicking
on the settings cog wheel in the top right. From here, the widget name and
widget symbol can be changed as necessary. Name the Vacant widget as
“Vacant” and choose the green circle as the widget symbol.

Now that the Vacant widget has been created, you can begin adding as
many “SCUTTLE #” widgets as needed. Start by taking your SCUTTLE robot’s
RFID tag and scan it using the charging station. The charging station will
automatically save this new ID and create a new widget for you. Now that the
widget has been added to the dashboard, do as you did before and make the
widget permanent by clicking on the “+” button in the top right hand corner of the
widget. Same as before, click on the settings button and change the name of the
widget to your SCUTTLE’s name. You can then change the symbol to whichever
you like. To add more SCUTTLE widgets, simply repeat this process.

b) SCUTTLE Widgets
When adding a new SCUTTLE to the IoT database, the “Charging Status”

and “Battery Level” widgets need to be added to complete the SCUTTLE
dashboard. To do this, begin by running the L3_batterystatus_cayenne code.

13

Running this code will automatically add these widgets. To make these widgets
permanent, click the “+” button in the top right hand corner of each widget.
These widgets can then be customized by clicking on the settings cog wheel in
the top right. From here, the widget name and widget symbol can be changed as
necessary. Name the Charging Status widget as “Charging Status” and choose
the lightning bolt as the widget symbol. Similarly, name the Battery Level widget
as “Battery Level” but leave the widget symbol alone.

14

Software Breakdown

Software Overview
The following is a list of all files and functions contained within them which come

provided with our project repository.

L1_gpio.py # This code writes and reads from the GPIO pins available on the BeagleBone
Blue.

pin_setup(port=None, pin=None, state=None): # A function for setting up pins.

def index_exists(index,i): # Check that an index exists. Used to check if a pin exists.

check_args(port=None, pin=None, state=None): # Check that the values passed to our
functions are valid

read(port, pin): # Use this function to read an input.

write(port, pin, state): # Use this function to control an output.

L1_cayenne.py # This code is used to setup a connection to Cayenne and publish data to
different types of widgets

ConnectionSetup(MQTT_USERNAME, MQTT_PASSWORD, MQTT_CLIENT_ID):
#This function Initializes the client and connects to Cayenne

Loop(client): # This function processes Cayenne messages. This should be called
regularly to ensure Cayenne messages are sent and received.

digitalWrite(client, channel, value): # This function sends data to Cayenne and creates a
digital (boolean 0/1) widget

batteryWrite(client, channel, value): # This function sends data to Cayenne and creates
a battery widget

celsiusWrite(client, channel, value): # This function sends data to Cayenne and creates
a temperature widget

15

voltageWrite(client, channel, value): # This function sends data to Cayenne and creates
a temperature widget

L2_battery.py # This program is used in conjunction with the SCUTTLE On-board Module pack

getBatteryVoltage(): # This function toggles the S.O.B relays and samples barrel jack
voltages to determine an accurate battery pack voltage

getBatteryPercentage(BatteryVoltage): # This function is used to convert SCUTTLE's
battery voltage to a battery percentage

getChargingStatus(BatteryVoltage): # This function is used to determine if the SCUTTLE
is charging by comparing the battery voltage to the voltage when relays are closed

updateBatteryStatusCayenne(client, ChargingStatus, BatteryPercentage): # This
function is used to update the battery status to Cayenne

L2_docking_functions.py # This code contains functions for getting the scuttle in front of the
station when it is offset by a certain amount

GetSH(): #This function requires a specific NodeRed flow to operate properly. Gist link
for NodeRed flow:
https://gist.github.com/TheWhiteCollarPlayers/4efbc1c717bd1d4bc5863db4d5755d41
This function reads the file created by NodeRed which contains the charging station's
heading between 0-360

GetTH(SH): # This function takes input of the Station's Heading and returns the target
heading. Input and output are in 360 notation.

DriveDP(xdot,tdot,st): #This function takes linear and rotational speed, as well as time,
to make the SCUTTLE drive a fixed distance using closed loop driving

GetH360(): #get scaled values from L2 heading, in 360 notation

GetInFront(SH): #This function performs the calculations and drive movements for
centering the SCUTTLE directly in front of the station

FindStation(Dir): # This function is used to spin in a circle and search for the station
through camera vision

16

https://gist.github.com/TheWhiteCollarPlayers/4efbc1c717bd1d4bc5863db4d5755d41

CloseThetaOffset(): # This function is used to align camera vision directly with the
station's target

driveStraight(): # This function is for approaching the ball head-on, and stopping when
the SCUTTLE is sufficiently close to the target

imageWait(st): #this function is used to mitigate the issue with image processing delays,
it takes an input of the amount of time to process images in the buffer stack

CheckForCharging(): # This function is used to check if the SCUTTLE is properly docked
and aligned with the charging pads

ChargeAndUndock(client): # This function is used to undock if the batteries are fully
charged

L3_batterystatus_cayenne.py # This program is used to continuously update SCUTTLE
battery level status to Cayenne

L3_Dock.py #this file contains the function for docking the SCUTTLE at the charging station

Dock(): #this function docks the SCUTTLE at the charging station

L3_gamepaddrive.py #this file allows for basic driving of the SCUTTLE using a gamepad and
executing the docking function by pressing the B button

L2_heading_station.py # This program takes magnetometer readings and converts them to be
used for the charging station heading.

PubSH(SH): #this function publishes the Station's heading to a topic for the SCUTTLE to
receive for docking information, takes in the station heading as an argument
(0<SH<360) link for nodered
https://gist.github.com/TheWhiteCollarPlayers/c2b06844936c2a53df7ecf87d130ccbc

getYZ(): # this function returns an average of several magnetometer readings for y and z

scale(axes): # convert raw values to range of [-1 1]

getHeading(myAxes): # convert scaled values to a heading

GetH360(): #scales heading to 360 degree range

17

https://gist.github.com/TheWhiteCollarPlayers/c2b06844936c2a53df7ecf87d130ccbc

L2_RFID_station.py # This program is used for the Charging Station only. These functions are
responsible for reading RFID tags, comparing scanned RFID tags to SCUTTLE IDs,
and reporting Occupancy status to the Cayenne IoT Database.

scanandcompare(): # This function is used to scan for an RFID tag and compare that tag
to the current list of SCUTTLE IDs

checkforunrecognized(id): # This function is used to add a new SCUTTLE ID if the
scanned tag is not recognized

updateoccupancystatus(client): # This function is used to update statuses to Cayenne if
the statuses have changed

L3_chargingstation.py # This program is used for the Charging Station only. This program is
used to continuously update charging station's occupancy status to Cayenne, and update
charging station's compass heading to NodeRed topic

Error Codes

ChargingStation Error Codes
901 - L2_heading_station.py, GetH360, #This error code indicates something has gone wrong
in the 180 to 360 conversion for heading

SCUTTLE Error Codes
801 - L2_docking_functions.py, GetSH()/GetTH(), #Station heading is greater than expected
range

802 - L2_docking_functions.py, GetSH()/GetTH(), #Station heading less than expected range

803 - L2_docking_functions.py, DriveDP(), #The endtime is less than the current time, shouldn't
be possible, user likely entered a negative value for stop time

804 - L2_docking_functions.py, GetH360(), #received heading less than expected range, will
have improper conversion

805 - L2_docking_functions.py, GetH360(), #received heading greater than expected range

806 - L2_docking_functions.py,GetH360(), #something has gone wrong in the 180 to 360
conversion for SCUTTLE heading, unexpected type most likely or NULL

18

807 - L2_docking_functions.py, FindStation(), #Target not found within time limit

809 - L2_docking_functions.py, GetSH(), #File read fail

Charging Station Software Setup
In the event that a new charging station is made, this section describes how to make the

charging station run L3_chargingstation.py upon bootup.
Note: This “run on bootup” service runs in the background, which means that you can run other
python scripts and it will not interfere with the background service. Both scripts will run
simultaneously!

1) Creating a background service
In order to have the charging station code start upon bootup, a background service must
be made. Start by navigating to /etc/systemd/system and creating a new service file.
cd /etc/systemd/system
sudo nano chargingstation.service

2) Writing your service file
Next, copy the following script and save it into your new service file. Make sure that the
highlighted lines are true for your device. Change the directory (highlighted lines) to
wherever your L3_chargingstation.py code is located. Once you have copied the
following code into your script, exit and save your script with ctrl+x and y.
[Service]
Type=simple
ExecStart=/usr/bin/python3
/home/debian/bin/Nextec/ChargingStation/L3_chargingstation.py
WorkingDirectory=/home/debian/bin/Nextec/ChargingStation

[Install]
WantedBy=multi-user.target

3) Set up service daemon to run on boot
Now you can run the following command lines in the terminal to set this service to run in
the background on bootup.
sudo systemctl daemon-reload
sudo systemctl enable chargingstation
sudo systemctl start chargingstation

4) Checking if it worked

19

If you followed the steps correctly, the service should be running in the background and
will start upon boot up if you reset your device. To test if it is running in the background,
simply run the following command line from any directory.
sudo service chargingstation status
If the status is green and active, then you have successfully made the service run in the
background. Use ctrl-c to get back to your terminal window.
Note: This “run on bootup” service runs in the background, which means that you can
run other python scripts and it will not interfere with the background service. Both scripts
will run simultaneously!

20

Hardware Breakdown

The Charging Station

Electrical / Electronic Assembly
The following is a bill of materials for all electrical / electronic components related to the
Charging Station:

The Gerber files for printing more PCB’s for the Station, are provided with the rest of the
documentation for this project. Once these are printed from a boardhouse, we recommend
JLCPCB, Figure 3.0 and the information below provide a guide on soldering the components to
the board.

21

Figure 3.0: Charging Station PCB Layout

Label on PCB - Component For Soldering
P1 - Barrel Jack

P2 - USB 2.0 Female Receptacle
P3 - USB 2.0 Female Receptacle (opening towards board edge)
P4 - USB 2.0 Female Receptacle (opening towards board edge)
P5 - USB 2.0 Female Receptacle (opening towards board edge)

To connect the Station’s wireless charging base pads, use a Micro USB to USB cable,

much like common phone chargers, and connect the pads to P3-P5. The BeagleBone Blue is
also powered via Micro USB to USB by plugging into P2. Figure 3.1 below shows the wiring
connection from the Station’s BeagleBone Blue to the MFRC522 RFID Interrogator.

22

Figure 3.1: BeagleBone Blue to RFID Reader Wiring Diagram

Mechanical Assembly
The following is a bill of materials for all items related to the structural construction and

components housing for the Charging Station:

The acrylic panels for the front and rear of the Station can be laser cut using the DXF
image files provided with the rest of the documentation from this project. Additionally, the “feet”
of the Station can be printed using a 3D printer and the STL files provided with the rest of the
documentation for this project.
This link shows a walkthrough of the Charging Station assembly: https://youtu.be/B1KRIUH1kig

23

https://youtu.be/B1KRIUH1kig

The On-Board Module

Electrical / Electronic Assembly
The following is a bill of materials for all electrical / electronic components related to the

SCUTTLE On-Board module:

Figure 3.2 and the information below provide a guide for soldering the components onto
the S.O.B. PCB.

Figure 3.2: S.O.B. PCB Layout

Label on PCB - Component (Good practice to follow this order)
(R1-R3) - 1.2kOhm Resistor

R4 - 50k Ohm Resistor
Q1 - FET (etched circle facing towards P1)

P1 - Single Header Pin
(P2-P4) - Female Micro USB Receptacle (opening facing towards edge of board)

P5 - Female LiPo Connector Receptacle*
(K1-K3) - Relay

*Note: LiPo receptacle should be soldered such that when plugged in, the cable should have the
yellow wire towards the P5 label and the black wire towards the GND label.

24

This link is a video showing the proper soldering connections to modify the battery pack so that
it is compatible with the power management system: https://youtu.be/1plyFnfvYhw

Mechanical Assembly
The following is a bill of materials for all components related to the structural and mounting
assembly for the SCUTTLE On-Board Module equipment:

The acrylic panel for the front panel mounting of the receiver pads can be laser cut using the
DXF image supplied with the original documentation of our project.

This link is a video walkthrough for assembling the On-Board hardware and mounting it onto the
SCUTTLE to ensure its compatibility with the power management system:
https://youtu.be/A4b8yb18r9k

25

https://youtu.be/1plyFnfvYhw
https://youtu.be/A4b8yb18r9k

